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A. Introduction

Figure 1. Goals of the AI4AD Initiative.

The overall goal of the Artificial Intelligence for Alzheimer’s Disease (AI4AD) machine learning initiative is
to use advances in deep learning, machine learning, and AI (artificial intelligence) to tackle key
challenges in Alzheimer’s disease (AD) research. The Project’s overall Aims (Figure 1) are:
(1) Genomics: use AI to identify genomic motifs and features associated with AD, and clinical resilience
and decline in whole genome sequence data;
(2) Imaging Harmonization and Disease Subtyping: use AI to merge and calibrate MRI, amyloid- and
tau-PET and vascular imaging across cohorts to identify AD subtypes, and relate these subtypes to
specific genomic predictors and outcomes;
(3) Imaging and Genomic Predictors of Cognition: use AI to identify genomic motifs that predict brain
imaging signatures of AD and decline in specific cognitive domains;
(4) Genome-Guided Drug Repurposing: create a drug prioritization system to discover drugs to
repurpose based on genomic markers discovered in the other Aims;
(5) Train the AD community in easy-to-use AI methods to accelerate AD research.
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B. Progress to Date

Figure 2. Data Flow for Identifying Risk/Protective Factors in the Genome, using AI.

1. AI applied to Whole Genome Sequences. Drs Sarah and Sasha Zaranek (Curii and Harvard
University) have pioneered a method to represent whole genome sequences using a standardized and
curated library of ‘tiles’ that can then be read into AI and machine learning methods to identify AD
risk and protective factors (Figure 2). This greatly reduces the massive-scale WGS data into tractable
inputs for feature detection and integration. Tiling is a way to break up the genome into shorter
sequences called tiles, which are defined by a set of two tags (24-mers). Pilot work on whole genome
tiling shows that unsupervised sparse regression methods - such as adaptive LASSO - can discover
genomic predictors of AD, and can combine them into weighted risk scores that merge the predictive
effects of multiple genetic variants. In 4,000+ tiled genomes from ADSP and AD Neuroimaging Initiative
(ADNI), the best fit model so far (GLM Adaptive Lasso) has identified 411 tile variants that help to predict
AD status. Encouragingly, the top two coefficients were phase 0 and phase 1 of the APOE 𝜺4 variant
(rs429358); ongoing work includes generating a ranked variant list and comparing discovered loci to
those from standard mass-univariate GWAS.

Extending classical machine learning methods to handle whole genome sequences, Dr Sarah Zaranek
presented to the AI4AD and ADSP Analysis Working Groups and gave tutorials on how to use
whole-genome data with AI algorithms, by first representing it using tiles. She is now creating a GitHub
tool repository to decompose whole genomes into tiles, so that computer scientists across AI4AD can
work with WGS, starting with the ADNI and WHICAP datasets. This toolset will make it much easier to
input enormous genetic sequencing datasets into novel AI methods, and will offer head-to-head testing
of new AI methods against a suite of well-known traditional machine learning algorithms. Whole genome
tiling is now underway for the ADNI and WHICAP datasets, for initial tests that will use deep learning to
predict AD diagnosis, and prognosis (clinical decline). Tiled and curated WGS data will be returned to
NIAGADS for wide public use. Parallel work by the ADSP Harmonization Core (Hohman, Saykin, and
Crane labs) has co-calibrated 4 cognitive domains across ADNI and ROSMAP datasets, to allow deep
learning methods to predict future decline in individual patients, from this same whole genome data.
Benchmark tests already suggest that tiled whole genome data predict AD status better than standard
regression methods (such as PRS) applied to univariate markers. This work is now being extended to the
more ethnically diverse WHICAP cohort (1,700 individuals), with help from WHICAP Co-PI, Adam
Brickman (Columbia Univ.).
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2. AI applied to Brain Imaging for Predictions in Individual Patients. We developed state-of-the-art
convolutional neural networks that can predict a person’s age and whether they have Alzheimer’s
disease based on a standard T1-weighted brain MRI scan. We have used two complementary
approaches to this problem. The first is summarized in Figure 3 (Lam 2021, Zhang 2021, Stripelis 2021).

Figure 3. Gated-Attention Convolutional Neural Networks can make Individualized Patient Predictions from Brain MRI
Scans. In Lam (2021), we supplemented a standard convolutional neural network (CNN; upper left) with an attention
mechanism (upper right) to identify imaging regions and features within them that can make predictions for an individual patient
(here estimating their age, and AD diagnosis). Trained on diverse AD biobanks, automated AI-driven feature discovery is also
now being tested for identifying brain signatures associated with AD genomic risk signatures.

The second approach, developed by Dr.
Davatzikos and his laboratory (Bashyam
2020) was trained on a large cohort of the
adult lifespan, and was tested in various
cross-validation paradigms. Critically, that
study revealed that both very tight and very
loose brain age models produce suboptimal
clinical value, when it comes to using brain
age as a disease related biomarker (tested
on MCI, AD, schizophrenia, and depression;
see Figure 4).

Figure 4. Results from Bashyam et al., Brain, 2020.
Modestly-fitting brain age models provide the best
diagnostic value in MCI, AD, schizophrenia, and
depression, indicating that brain age models that try to
very accurately predict an individual’s age might
produce clinically less-informative brain age residuals,
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by virtue of focusing on disease-unrelated imaging features. These results will further guide some of our developments of deep
learning diagnostic and predictive models, in this project.
Gated-attention mechanisms identify regions of the brain image that are especially useful for predicting
a person’s diagnosis, and are now being extended to identify brain regions where atrophy,
microstructure, or amyloid-/tau- deposition are associated with diagnosis of AD and prognosis. The same
approach is being tested for predicting amyloid load and CSF amyloid markers from MRI.

The Tosun Lab (UCSF) developed a novel machine learning approach to identify patterns in MRI and
amyloid-sensitive PET data that predict neuropathologically confirmed cellular and molecular markers of
AD and other related neurodegenerative diseases. This information is normally only obtainable at
autopsy, and in a limited number of subjects - the ADNI and National Alzheimer’s Coordinating Center
(NACC) datasets have cellular histopathology in a subset of individuals. These paired datasets were
used to train a machine learning method to predict specific cellular histologic markers; in living subjects,
the inferred pathology was useful in predicting a proportion of the observed variance in clinical decline,
over a 1-year follow up.

Dr Tosun recently presented this proposed model at the Alzheimer's Therapeutic Research Institute
(ATRI) of USC as a precision medicine approach to clinical trials in sporadic AD. This subtyping of
dementia is likely to be extremely valuable for drug trials. Drugs may work better in specific subtypes of
patients identifiable using AI - either to guide enrolment or for later stratification. AI will be used to cluster
patients by ATN(V) categorization for precision medicine (stratified testing of interventions).
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Figure 5. A multilabel classifier to identify individuals with non-AD co-pathologies. As presence of AD and comorbid
non-AD pathologies (i.e., TDP-43, Lewy Body, and cerebral amyloid angiopathy) are not mutually exclusive, we developed a
multilabel random-forest classifier to jointly predict presence of non-AD pathologies from demographic information (age, sex,
education), APOE genotype, clinical measures, brain morphometry from structural MRI, and presence of AD pathologies of
amyloid and tau. Trained on diverse AD autopsy cohorts, including ADNI and NACC, automated ML-driven anatomical brain
signatures recapitulate brain regions affected by non-AD neuropathologies independent of AD pathologies. When applied to in
vivo data, the ML model allows us to assess age and disease stage specific prevalence of mixed neuropathologies and their
contribution to cognitive decline in living humans.

The Davatzikos lab (U Penn) and the Tosun lab (UCSF) developed and trained other team members in
the use of AI methods to harmonize MRI and PET imaging data across scanners. AI methods including
CycleGANs have revolutionized AI - making it easier to extend predictive models to data collected with
different resolutions and contrasts. We are using them in AI4AD to harmonize data from multiple
scanners, by mapping them to a canonical space of uniform image appearance. An example is shown in
the figure below.

Figure 6. Top row shows an MRI scan from Scanner 2, and bottom row shows an MRI scan from Scanner 1, which is used as
reference. The middle row shows the transformed scan from Scanner 2 to the reference appearance. This method was based
on deep learning models that are now used in a variety of applications to change the stylistic appearance of an image without
changing relevant aspects of its content. We will use these methodologies to reduce confounding variations due to scanners and
MR acquisition protocols. Results from (Bashyam et al., in review).

The Huang lab (U Pittsburgh) developed a mathematically novel deep learning method (Zhang 2021a)
that can make predictions in a smaller dataset using much larger auxiliary datasets for training, an
approach known as transfer learning. The new deep neural network model is designed to use
transferable batch normalization to eliminate the distribution difference of different brain datasets. They
formulated the brain outcome and phenotype prediction task as a semi-supervised problem and the
virtual adversarial training was introduced as the regularization. The experiments were conducted on
ADNI and NACC T1-weighted brain MRI data to predict brain outcomes with good performance. In a
second study (Zhang 2021b), they developed a new multimodal brain data integration method (the
multimodal brain data could be multi-view connectomes or multimodal imaging genetic data) to predict
cognitive status. They proposed to learn a unified representation for multimodal brain data using a novel
variational graph autoencoder (VGAE). As an example, they applied this method to unify multi-layer brain
networks computed from different commonly used fiber tractography algorithms. The new autoencoders
create a merged “multi-view” generative representation, based on several complementary fiber tracking
methods.

5



Figure 7. The structure of the proposed multimodal data integration deep neural network. For each view, an independent
variational graph auto-encoder (VGAE) is used. We enforce the multi-view VGAE to learn a unified representation, and allow the
sigma parameter to be different. The reparameterization is based on the shared mu and view-wise sigma. mu is used for the
downstream analysis.

In a third study, Zhang et al. (2021c) addressed the ‘incomplete multimodal brain data problem’ -
whereby a predictive machine learning model must be trained on diverse datasets that each may lack
some data subtypes. They proposed to learn the modal-wise representations and synthesize the targets
accordingly. A surrogate sampler was derived to generate target representations from incomplete
observations; these were then used to design an interpretable attention-redistribution network.
Experiments were conducted on ADNI MRI and PET data. The new method can handle different missing
data scenarios and outperforms prior methods consistently.

3. AI to Discover Imaging Features that Mediate the Effect of Alzheimer’s Disease Polygenic Risk
on Clinical Decline. The Shen lab (U Penn) pioneered the application of a causal mediation model for
AD imaging genetics studies, which can detect features in brain scans that mediate the effect of
polygenic AD risk on clinical outcomes. In Eng et al. 2020, they performed a polygenic mediation
analysis in an amyloid imaging genetic study of AD, and identified multiple imaging mediators linking
genetic variants and polygenic risk scores (PRS) to AD outcomes. In the AI4AD initiative, the same
strategy will be used to prioritize and identify imaging biomarkers (e.g., multimodal MRI and PET
measures) that can best explain the association between sets of genetic variants and standard measures
of clinical disease burden. This method will be integrated with deep learning to detect biomarker patterns
in brain scans that mediate (explain) effects of specific sets of genomic features on clinical disease
burden, enabling disease subtyping and genome-to-brain mapping to understand previously unknown
effects of risk genes and deconvolute mechanistic complexity of the AD phenotypic outcomes.

4. Drug Repurposing. The Jun Lab (Boston University) is building a bioinformatics system that encodes
and learns from results from genomics (ADSP and other GWAS data) and multi-omics studies of AD risk
as well as imaging and fluid biomarkers to determine relations between druggable targets, genomic
patterns, and signature profiles - including transcriptomic, proteomic, methylomic, and metabolomic data
- and multimodal brain imaging. Leading our AI4AD Drug Repurposing Core, which is coordinated with
ADSP Functional Genomics efforts including AMP-AD, Dr Jun’s team has been adding existing data from
drug informatics databases to her PSBO system (relating predictors, signatures, biomarkers, and
outcomes; see Figure 8) to identify and prioritize drug candidates by storing information on their known
effects on biomarkers.

Figure 8. Concept of the
PSBO target prioritization
system and network-based
drug repurposing.
Association results in the
PSBO system are shown as
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relationships: PO: predictor-outcome; PB: predictor-biomarker; PS: predictor-signature; SB: signature-biomarker; SO:
signature-outcome; BO: biomarker-outcome.

In silico trials are also possible by determining downstream effects of a change in a biomarker, or effects
in a population subgroup, such as those with a protective allele. The PSBO system is aiding Dr Jun’s
work on APOE-mediated drug candidates by discovering modulators of the tau and complement cascade
pathways (Patnich 2021; Jun 2021). Dr Jun’s team is working together with other members of AI4AD to
determine AD gene-centric networks enriched with AD related signatures, biomarkers, and clinical/
neuropathological outcomes to match to existing drugs applicable in subgroups of AD patients influenced
by APOE genotypes. Given our AI methods for patient subtyping based on imaging, the networks in the
PSBO system will be used to search for omics signatures that are characteristic of specific
imaging-defined AD subtypes, and in patients with decline in specific cognitive domains. We will soon be
adding our brain biomarker GWAS summary statistics (for MRI, PET, and white matter hyperintensities)
as well as metabolomic analysis results from ADNI to the PSBO system.

C. Conclusions
Although active for only 4 months, our AI4AD Consortium has made progress in AI-assisted diagnosis of
AD based on neuroimaging, and is starting work on AD subtyping and clustering, with methods that can
already predict neuropathology and cellular hallmarks of AD in the ADNI and NACC cohorts. The efforts
to use brain imaging along with AI to predict clinical outcomes will be assisted by the coming year’s work
on co-calibration of common cognitive domains across ADSP cohorts, in partnership with the ADSP
Harmonization Core. On the whole-genome side, work has begun on decomposing the genome into units
(tiles) that can be readily input into AI algorithms for diagnosis, prognosis, and subtyping.

Subtyping the heterogeneity of AD is the basis of the now widely-accepted ATN(V) system; AI methods
are being developed to identify and better define clusters of patients with distinct pathology and
outcomes, who then become more homogeneous groups in whom to assess interventions, and for
clinical trial stratification. For AI methods to work well on unseen data, we are testing generative
adversarial networks (GANs), transfer learning, domain adaptation, and related innovations in AI, to
transfer successful predictive algorithms to datasets collected with different protocols.

D. Diversity, bias, and inclusion
Diversity, bias and inclusion are crucial to consider when developing AI methods that must work for all
individuals, regardless of sex and race/ethnicity: methods trained on one cohort may not generalize well
to others. Our most powerful genome-wide screen of 70,000 brain MRIs with Cohorts for Heart and
Aging Research in Genomic Epidemiology (CHARGE) and Enhancing Neuro Imaging Genetics through
Meta-Analysis (ENIGMA) consortia recently yielded a brain-related polygenic score that predicts ~4% of
the variation in hippocampal morphometry in Whites, but only 2-3% in non-Whites, mandating greater
inclusion of non-Whites. As ADSP is finding ancestry-dependent effects of AD genetic risk factors such
as APOE, we will start to adapt and test our AI methods using the racially and ethnically diverse
WHICAP dataset, expanding to more diverse cohorts in future years, in close partnership with other
ADSP efforts.
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